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Definitions

The equation being linear and we find that summation of two
dependent/independent solutions is also a solution.

If nearby frequency waves, with same phase and amplitude,
superposes Beats are produced. Here the amplitude is modulated.
The modulation frequency is equal to the difference in frequencies of
the two waves.

If waves with same frequency and amplitude and a constant phase
difference superposes Interference pattern is produced. Here too the
amplitude is modulated but the amount of modulation is position
dependent. The energy is thus redistributed in space.
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Linearity of EOM ⇒ Superposition

The equation of motion is said to be linear if the differntials have
constant coefficient only. Therefore,

αÿ + βy = 0 (1)

is a Second Order Linear differential equation.

If y1 and y2 are two different solutions then

αÿ1 + βy1 = 0

αÿ2 + βy2 = 0

⇒ α(ÿ1 + ÿ2) + β(y1 + y2) = 0

⇒ α
d2(y1 + y2)

dt2
+ β(y1 + y2) = 0

y1 + y2 is also a solution.
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General Superposition

Consider two solutions y1 = a1 sin(ω1t + φ1) and
y2 = a2 sin(ω2t + φ2).

Write y1 = Im[a1e i(ω1t+φ1)] and y2 = Im[a2e i(ω2t+φ2)] and so

y1 + y2 = Im[a1e i(ω1t+φ1) + a2e i(ω2t+φ2)]

= Im[e iω1t(a1e iφ1 + a2e i(ω2t−ω1t+φ2))]

= Im[e iω1t(Ae iθ)]

= A sin(ω1t + θ) (2)

where

A =
√

a2
1 + a2

2 + 2a1a2 cos[(ω1 − ω2)t + (φ1 − φ2)] (3)

and

θ = tan−1 [a1 sinφ1 + a2 sin(ω2t − ω1t + φ2)]

[a1 cosφ1 + a2 cos(ω2t − ω1t + φ2)]
(4)

The resultant has modulated amplitude. The phase is varying with
time, so the frequency is also not well defined.
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Consider two solutions y1 = a1 sin(ωt + φ1) and y2 = a2 sin(ωt + φ2).

Write y1 = Im[a1e i(ωt+φ1)] and y2 = Im[a2e i(ωt+φ2)] and so

A =
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a2
1 + a2
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and

θ = tan−1 (a1 sinφ1 + a2 sinφ2)

(a1 cosφ1 + a2 cosφ2)
(6)
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Solution

Consider two solutions y1 = a sin(ωt + φ1) and y2 = a sin(ωt + φ2).
So

A = a
√

2[1 + cos(φ1 − φ2)] = a

√
2× 2 cos2

(φ1 − φ2)

2

= 2a cos
(φ1 − φ2)

2
(7)

and

θ = tan−1 (sinφ1 + sinφ2)

(cosφ1 + cosφ2)
= tan−1 2 sin (φ1+φ2)

2
cos (φ1−φ2)

2

2 cos (φ1+φ2)
2

cos (φ1−φ2)
2

=
(φ1 + φ2)

2
(8)

Thus,

y = 2a cos
(φ1 − φ2)

2
sin

(
ω1t +

(φ1 + φ2)

2

)
(9)
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Solution

Consider two solutions y1 = a sin(ω1t + φ) and y2 = a sin(ω2t + φ)
(the phase need not be constant). So

A = a
√

2[1 + cos(ω1 − ω2)t]

= 2a cos
(ω1 − ω2)

2
t

and

θ = tan−1 [sinφ+ sin(ω2t − ω1t + φ)]

[cosφ+ cos(ω2t − ω1t + φ)]

= tan−1 2 sin (ω2t−ω1t+2φ)
2

cos (ω1t−ω2t)
2

2 cos (ω2t−ω1t+2φ)
2

cos (ω1t−ω2t)
2

=
(ω2t − ω1t + 2φ)

2

=
(ω2 − ω1)

2
t + φ (10)
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Thus,

y = 2a cos
(ω1 − ω2)

2
t sin

(
ω1t +

(ω2 − ω1)

2
t + φ

)
=

(
2a cos

(ω1 − ω2)

2
t

)
sin

(
(ω1 + ω2)

2
t + φ

)
(11)

The frequency (ω1 − ω2)/2 is small if ω1 and ω2 are close by. The
amplitude seems to be modulated. When we hear such a modulated
wave, we intercept the energy at twice the rate at which amplitude
changes. So the Beat frequency is ω1 − ω2.
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We have,

y = 2a cos
(φ1 − φ2)

2
sin

(
ω1t +

(φ1 + φ2)

2

)
(12)

Thus,the Intensity

I =
〈

y 2
〉

= 4a2 cos2 (φ1 − φ2)

2

〈
sin2

(
ω1t +

(φ1 + φ2)

2

)〉
= 4a2 cos2 (φ1 − φ2)

2
× 1

2

= I0 cos2 (φ1 − φ2)

2

because, for random phases, the average of sin2 and cos2 is positive
and equals the value 1/2.

The intensity is maximum when the phase difference takes the value
±nπ where n = 0, 1, 2, ...

The Intensity at a given position therefore depends on the Phase
Difference betweeen the two superposing waves at that position.
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